神經網路完成晶元設計僅需幾小時

  來源:科技日報

  科技日報北京6月9日電 (記者張夢然)英國《自然》雜誌9日發表一項人工智慧突破性成就,美國科學家團隊報告機器學習工具已可以極大地加速計算機晶元設計。研究顯示,該方法能給出可行的晶元設計,且晶元性能不亞於人類工程師的設計,而整個設計過程只要幾個小時,而不是幾個月,這為今後的每一代計算機晶元設計節省數千小時的人力。這種方法已經被 谷歌 用來設計下一代人工智慧計算機系統。

  不同元件在計算機晶元上的布局,是決定晶元整體性能的關鍵。設計計算機晶元的物理布局既複雜又耗時,難度非常大,需要專業人類設計工程師付出大量工作。而儘管已為此進行多年的嘗試,晶元布局規劃一直都無法實現自動化,需要設計工程師們花費數月的努力才能生產可供規模製造的布局。

  在位於美國加州的谷歌研究院內,人工智慧專家阿澤利亞·米爾侯賽尼、安娜·戈迪耶及其同事最新的研究表明,機器學習工具已經可以用來加速這一名為「布局規劃」的流程。

  研究團隊將晶元布局規劃設計成一個強化學習問題,並開發了一種能給出可行晶元設計的神經網路。他們訓練了一個強化學習智能體,讓這個智能體把布局規劃看作一種棋盤遊戲:元件是「棋子」,放置元件的畫布是「棋盤」,「獲勝結果」則是根據一系列評估指標評出的最優性能(評估基於一個包含1萬例晶元布局的參考數據集)。

  研究人員指出,這種方法能在6小時內設計出與人類專家不相上下或是更好的可行晶元布局,有望為今後的每一代計算機晶元設計節省數千小時的人力。

  美國加州大學聖迭戈分校科學家安德魯·康在一篇同時發表的新聞與觀點文章中寫道,「開發出比當前方法更好、更快、更省錢的自動化晶元設計方法,有助於延續晶元技術的『摩爾定律』」。這裏的摩爾定律,是指每塊晶元的元件數量大約每兩年會翻一番。

  安德魯·康同時表示,在這一研究中,團隊展示的布局規劃方案已經被用來設計谷歌的下一代AI處理器,這也顯示出其設計質量可用於大規模生產。

   總編輯圈點

  在不到6小時的時間里,一個深度學習強化方法,可以自動生成晶元設計的所有關鍵指標,包括功耗、性能和晶元面積,且給出的布局圖都優於或可與人類設計的晶元布局圖相比肩。這無疑是人工智慧助力人類實現更好、更快、更強目標的範例。有意思的是,這個人工智慧現在又被拿去設計下一代人工智慧,這讓我們看到一種共生關係——更強大的人工智慧設計硬體,正在推動人工智慧的進步。

台灣疫情資訊

縣市累計確診人數

相關熱門

綠色永續